Identification and Correlation Analysis of Critical Intersections in Urban Road Network Based on Vehicle Trajectory Data
编号:1903 访问权限:仅限参会人 更新:2021-12-03 14:42:18 浏览:115次 张贴报告

报告开始:2021年12月17日 08:26(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
To realize the coordinated control of multiple intersections in a large-scale urban road network, it is necessary to exploit a method to study critical intersections’ global correlation characteristics. First, the Real-coded Accelerating Genetic Algorithm Projection Pursuit Classification (RAGA-PPC) is used to solve and evaluate the intersections critical degree. Second, the k-means clustering algorithm is applied to intersections critical degree to divide the critical intersections and non-critical intersections. Third, a new approach of calculating the critical intersections’ correlation degree based on the improved FP-Growth algorithm, which can mine frequent itemsets of intersections from vehicle trajectories, is applied to analyze the global correlation characteristics of the selected critical intersection. Finally, Didi GAIA Dataset is selected for critical intersections identification and correlation analysis. The experimental results show that: the correlation between critical intersections tends to decrease with distance globally and is time-varying.
关键词
CICTP
报告人
Yilong Ren
Beihang university

稿件作者
Yilong Ren Beihang university
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询