Identifying Individual Activity Patterns from Mobile Phone Tracking Data
编号:1894 访问权限:仅限参会人 更新:2021-12-16 17:48:03 浏览:103次 张贴报告

报告开始:2021年12月17日 08:21(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Human mobility exploration through data mining gains many benefits from massive digital data sources. Geolocation data of mobile phones involves users’ spatio-temporal geographic information, but it does not include explicit labels of activities. This paper investigates individual activity patterns based on one-month mobile phone tracking data in the Paris region, France. The semi-definitive activity labels, including the primary anchor places and secondary activity places, are firstly extracted. The criteria of the cumulative presence duration and visiting frequency in activity locations over the study period are used to identify these places. To find individual activity patterns, characteristics such as activity frequency and activity duration related to the activity places are then investigated. Individual neighbor activity space is also measured around identified home and work places. Based on the individual activity features, we analyze statistically a set of activity patterns for all samples in our case study.
关键词
CICTP
报告人
Biao Yin
Ecole des Ponts ParisTech

稿件作者
BIAO YIN Ecole des Ponts ParisTech
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询