Spatial-Temporal Trajectory Clustering and Anomaly Analysis based on Improved OPTICS Method
编号:1889 访问权限:仅限参会人 更新:2021-12-03 14:41:59 浏览:130次 张贴报告

报告开始:2021年12月17日 08:20(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Vehicle trajectories clustering plays an increasingly essential role in understanding urban traffic patterns. In order to improve the clustering effect, in this paper, we propose a novel clustering method integrated with multidimensional trajectory information based on ST-OPTICS clustering algorithm. This density-based algorithm utilizes spatial, temporal, road segment and direction angle information to form clusters of varying density based on spatial and temporal closeness. Furthermore, we utilize DTW to build a similarity model to measure the similarity between vehicle trajectories. Then we conduct experiments on a large-scale vehicle trajectory dataset consisting of 2172 trajectories collected from the GPS traces nearby Beijing Olympic Parks. Compared with four general clustering frameworks: DBSCAN, ST-DBSCAN, OPTICS and ST-OPTICS, we demonstrate that our method performs better than other clustering methods by evaluated on two internal cluster validity measures. Finally, we explore route choosing strategy according to the travel time of different trajectories and discover some abnormal trajectories.
关键词
CICTP
报告人
Ke Zhang
Tsinghua University

稿件作者
Ke Zhang Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询