Mining Frequent Movement Patterns Using Various Regular Space Embedded Networks
编号:1886 访问权限:仅限参会人 更新:2021-12-14 21:48:39 浏览:122次 张贴报告

报告开始:2021年12月17日 08:29(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T3] Track 3 Transportation Planning and Policy

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the development of big data technology, research on the temporal and spatial characteristics of urban traffic distribution has received more attention. This paper applies different grid meshing methods to mine frequent movement patterns in time and space with taxi trajectory data to discover the spatio-temporal distribution of taxi travel demand. First, three different meshing models are proposed (i.e. triangle, square and hexagon) to divide the study area into grids. Then, a matching algorithm is used to index the taxi trajectory points into the grid. Finally, according to the trajectory of the taxi, temporal, spatial and spatio-temporal frequent movement pattern are mined respectively. The experimental results show that the method proposed in this paper can effectively extract frequent movement patterns, and different grid models give different pattern extraction results. This study can provide taxi drivers with a path basis for frequent orders and help improve the efficiency of taxi operations.
关键词
grid model;spatio-temporal characteristic;frequent movement pattern;taxi trajectory
报告人
Linhua Li
Southeast University

稿件作者
Xiao Fu Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询