Investigating the Impact of Truck Classes on Non-Truck Crash Severity Using Correlated Random-Parameter Binary Logit Model
编号:1885 访问权限:仅限参会人 更新:2021-12-03 14:41:54 浏览:94次 张贴报告

报告开始:2021年12月17日 08:37(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T4] Track 4 Transportation Behavior, Safety and Security

暂无文件

摘要
This study aims to investigate the role of the of truck volumes of various classes on the severity of non-truck crashes, with which the correlations between space-time-varying heterogeneities are considered. Fixed-, uncorrelated and correlated random-parameter binary logit models are established, based on crash and traffic data of five freeway segments in Shandong of China during 2016 to 2019. In total, 4,008 crashes on 5 freeways are extracted from the database and stratified into space-time panels. Results indicate that the proposed correlated random-parameter model is the optimal model among the three. Correlation in the heterogeneous effects between super-large truck volume and average speed is significant. The increase in mid-sized truck volume is associated with the increase in the crash severity of non-truck involved crashes, which gets weakened along the increasing total traffic volume.
关键词
CICTP
报告人
Fanyu Meng
Southern University of Science and Technology

稿件作者
Fanyu Meng Southern University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询