Enhanced ERFNet Decoder for Road Segmentation Model
编号:1851 访问权限:仅限参会人 更新:2021-12-12 17:33:08 浏览:99次 张贴报告

报告开始:2021年12月17日 08:15(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This study presents a road segmentation model with high accuracy and real-time performance. Road segmentation is a crucial problem in the application of autonomous vehicles, which requires real-time performance and accuracy. Nowadays, current models require high-resolution images to realize high accuracy performance, while the low-resolution losses many details. However, high-resolution costs much inference time and can’t meet the real-time requirement. To handle this problem, on basis of Efficient Residual Factorized ConvNet (ERFNet), we insert the feature fusion and enhance its upsampling blocks, which capture more road’s edge information and achieve higher accuracy. This enhanced ERFNet decoder is designed with three main components: multi-scale feature fusion, revised factorized layers and dense upsampling convolutions. The model is based on the encoder-decoder architecture, and the encoder network is Efficientnet-B1. The proposed model shows impressing results on both inference time and segmentation accuracy, and this efficient model can be applied to autonomous vehicle systems.
关键词
CICTP
报告人
Ping Sun
Tongji University

稿件作者
Ping Sun Tongji University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询