Comparing Random Forest with Four Classification Algorithms for Preference Prediction in Air-HSR Intermodal Services
编号:1847 访问权限:仅限参会人 更新:2021-12-09 15:30:33 浏览:107次 张贴报告

报告开始:2021年12月17日 08:13(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T3] Track 3 Transportation Planning and Policy

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Air and high-speed rail intermodal service (AHIS) is an emerging way of travel service. In this research, we aim to compare Random Forest algorithm (RF) with other four classification algorithms including Logistic Regression algorithm (LR), Gaussian Naive Bayes algorithm (GNB), K-Nearest Neighbor algorithm (KNN), Decision Tree algorithm (DT), in predicting travelers' ticket buying preferences. The research was conducted at Shijiazhuang Zheng Ding International Airport in 2019 to complete a passenger behavior survey. By comparing and analyzing the classification indexes such as accuracy rate and Receiver Operating Characteristic (ROC) Curve, we found that RF algorithm has the optimal classification prediction performance. Through the RF algorithm, we predict the travelers' ticket buying preferences of users and make several suggestions for the AHIS operator by changing different personal attributes and travel attributes.
关键词
classification;Random Forest algorithm;Air and high-speed rail intermodal service
报告人
Zheyuan Wang
Southeast University

稿件作者
Zheyuan Wang Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询