Human-scale quantitative analysis on urban road intersections
编号:1846 访问权限:仅限参会人 更新:2021-12-14 17:25:27 浏览:98次 张贴报告

报告开始:2021年12月17日 08:25(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T4] Track 4 Transportation Behavior, Safety and Security

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Road intersections have become an important part of the urban traffic system and the design quality of urban road intersections (URIs) will directly affect traffic conditions. Many evaluation methods have been established to guide the construction of urban road intersections. However, current analysis frameworks do not depict human activities in urban road space. This study proposed a sequence framework without additional investigation and experiments with several deep learning models to extract all the urban road analysis features which includes human scale variables. Three categories of URI are classified in the paper. Besides, a multivariate linear model (ML) is built to find the relationship between the possible variables and the URI distribution space. ML shows that geometric design conditions, traffic subsidiary facilities and human activities have positive effects on a good URI distribution. According to the model result, the paper proposed several suggestions to design a good URI.
关键词
CICTP
报告人
Zhiyong Shen
Tianjin University

稿件作者
shen zhiyong tju
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询