Modeling Car-following Heterogeneities by Considering Leader-follower Compositions and Driving Style Differences
编号:1843 访问权限:仅限参会人 更新:2021-12-03 14:40:58 浏览:141次 张贴报告

报告开始:2021年12月17日 08:24(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T4] Track 4 Transportation Behavior, Safety and Security

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In mixed traffic, the decision-making and/or control of connected automated vehicles (CAVs) largely depends on accurate description and prediction of HVs’ behaviors. To better understand the behavioral heterogeneities of HVs, the paper proposes a method to distinguish car-following behaviors in specific leader-follower contexts. The car-following data of the Next-Generation Simulation (NGSIM) dataset are classified into four leader-follower compositions, namely, truck-car (T-C), car-car (C-C), car-truck (C-T), and truck-truck (T-T). Based on the calibration results of a few well-known car-following models, principal component analysis (PCA) and clustering analysis are applied to the calibrated parameters to discover the behavior patterns and to find the probabilistic distributions of the parameters for the classified car-following (CCF) models. Simulation results show that compared to the unified car-following (UCF) models, the estimation error of calibrated CCF models is reduced by 17.96%-59.32%, which indicates that the proposed method provide a more accurate description of car-following heterogeneities.
关键词
CICTP
报告人
Yao Xue
Southwest Jiaotong University

稿件作者
Zhanbo Sun Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询