Aircraft Trajectory Prediction using Social LSTM Neural Network
编号:1835 访问权限:仅限参会人 更新:2021-12-03 14:40:47 浏览:120次 张贴报告

报告开始:2021年12月17日 08:12(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In this paper, we propose a Social Long Short-Term Memory (SLSTM) Neural Network for aircraft trajectory prediction. This model builds an LSTM network for each aircraft and uses a merging layer to merge the hidden states of its neighboring LSTMs. Then, it uses the merging results and trajectory information as its input for the next time step. Finally, we train the model by maximizing the probability of real trajectory and evaluate the prediction effect. The experiment is conducted with the flight trajectory dataset over the San Francisco Bay Area in 2006. The evaluation shows that our model has the smallest error from 17 to 18 o'clock when the airspace's flight trajectory density is the highest. The average horizontal error per point is about 282 meters, and the average vertical error per point is about 10 meters.
关键词
CICTP
报告人
Weili Zeng
Nanjing University of Aeronautics and Astronautics

稿件作者
Weili Zeng Nanjing University of Aeronautics and Astronautics
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询