Optimization of Train Seat Allocation based on Re-identified Passenger Demand from High-speed Rail Ticketing Data
编号:1833 访问权限:仅限参会人 更新:2021-12-03 14:40:45 浏览:144次 张贴报告

报告开始:2021年12月17日 08:10(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the aim of optimizing train seat allocation strategies, this paper applies a series of machine learning techniques to re-identify the real willingness to purchase tickets of different seat classes from high-speed rail ticketing data. Based on the re-identified demand, this paper studies optimization approaches from two perspectives. First, considering the practical operation conditions of railway companies, a rule-based distance priority principle is evaluated as a benchmark. Then, an integrated optimization approach considering operational revenue and train capacity utilization is developed, an integer linear programming problem with the objective of maximizing the total train revenue is formulated and solved. Results show that the proposed optimization approach outperforms the state-of-the practice by around 10%.
关键词
CICTP
报告人
Qiyuan Peng
Southwest Jiaotong University

稿件作者
Qiyuan Peng Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询