Parameter Calibration of Traffic Flow Speed-density Model Based on K-means Clustering Algorithm and Least Square Method
编号:1828 访问权限:仅限参会人 更新:2021-12-14 17:26:57 浏览:94次 张贴报告

报告开始:2021年12月17日 08:09(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The paper originates from the objective to verify the effectiveness of K-means clustering algorithm in dealing with large sample data deviation, and better describe the characteristics of highway traffic flow. The data was downloaded from the open source data of traffic flow detector of Whitemud Drive Highway in Canada. After data cleaning, K-means Clustering Algorithm was used to cluster large sample data to solve the problem of data deviation. Then the parameter calibration of Greenshields and Underwood traffic flow speed-density models according to the training set after clustering was conducted based on Least Square Method. Results of the two models are evaluated by means of statistics and probability theory. Finally, evaluation results show that the fitting effect of the Greenshields model is better than the Underwood model, and it is more suitable for decribing the traffic flow state of the highway in the study section.
关键词
CICTP
报告人
Sai Zhu
Southeast University

稿件作者
Zhu Sai Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询