Prediction of Real-time passenger flow for subway station passage based on wavelet variable weight combination
编号:1822 访问权限:仅限参会人 更新:2021-12-14 17:28:01 浏览:91次 张贴报告

报告开始:2021年12月17日 08:12(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T4] Track 4 Transportation Behavior, Safety and Security

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The real-time prediction of passenger flow in subway station passage sections is of great significance for operators to obtain real-time data support, ensure the safety of passenger flow in the station, and realize intelligent passenger transportation management. This paper adopts a real-time passenger flow forecasting model based on wavelet variable weight combination. Firstly, the trend and volatility of passenger flow data is decomposed and reconstructed by wavelet analysis method; secondly, Use two basic prediction models of SVM and RBF to make predictions, and add wavelet packet analysis method.; thirdly, the forecast results after the wavelet analysis obtained in the previous step are combined with variable weights to compare the prediction effects before and after the variable weight combination. The results show that the wavelet variable weight combination model, using wavelet analysis, SVM model and RBF model not only improves the prediction accuracy, but also improves the prediction stability.
关键词
CICTP
报告人
Wenya Liu
Nanjing University of Science and Technology

稿件作者
wenya liu Nanjing University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询