Forecasting Bus Passenger Flow Using Bi-LSTM with Attention Mechanism Models
编号:1820 访问权限:仅限参会人 更新:2021-12-13 00:02:02 浏览:97次 张贴报告

报告开始:2021年12月17日 08:08(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Passenger flow predictions is of great significance to bus scheduling and route optimiza-tion. In this paper, a novel algorithm, namely, Bi-directional Long Short-Term Memory with Attention Mechanism (Bi-LSTM-AT) are proposed to predict transit passenger flow. We utilize Bi-LSTM structure with attention mechanism to capture the spatiotemporal features, meanwhile, take into account external factors that affect passenger choices. We conducted a experiment using field data collected at Urumqi, china. The prediction results show an averaged absolute error (MAE) as low as 3.75, which demonstrated the feasibility of applying Bi-LSTM-AT in transit passenger flow forecasting.
关键词
CICTP
报告人
Jie Fang
Fuzhou University

稿件作者
Jie Fang Fuzhou University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询