A Framework for Driving Intention Estimation in Real-World Scenarios
编号:1757 访问权限:仅限参会人 更新:2021-12-03 13:45:23 浏览:103次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Driving intention estimation of the vehicle is important for safe driving, and the existing research has focused on the estimation of single driving intention, such as whether a lane change will be made. While in a real-world environment, safe driving requires a more comprehensive estimation for driving intention, such as rapid deceleration, changing lane to left or right, turning left or right. This study presents a complete framework for driving intention estimation in the real world, which consists of three parts: the definition of the driving intention set, the analysis of factors that influence driving intention estimation, and the input data set for driving intention estimation. To verify the validity of the framework, exploit the Berkeley open-source data set-BDD100K as the data source, take into account the typical time series characteristics of driving intention estimation, we use LSTM (Long Short-Term Memory) neural network as an advanced algorithm to model this multi-classification problem. The results show that, in combination with the framework, LSTM is a promising model for estimating vehicle driving intentions in a real traffic environment.
关键词
CICTP
报告人
He Huang
Tsinghua University

稿件作者
He Huang Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询