A spatial influence area model of station closure based on base learner
编号:1612 访问权限:仅限参会人 更新:2021-12-12 21:44:19 浏览:103次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In the rail transit system, the station closure changes the passenger flow and interrupts the normal operation, it is critical to determine the influence area to ensure the safety and efficiency of unnormal operation. In this paper, a data-driven model is established from the OD (Origin-Destination) level to identify the influence area of station closure. Firstly, the passenger flow and travel time distribution of OD pairs are considered as the main variable parameters of the affected OD pairs. Secondly, for each variable parameter, three kinds of anomaly detection algorithms are combined based on the base learner to develop the influence area identification model. Finally, a real-world case study based on the Beijing metro network is conducted to valid the proposed method. The result shows that the proposed model has better identification effect and higher accuracy than the single anomaly detection algorithm.
关键词
station closure;spatial influence area model;base learner
报告人
Linqi Xia
Beijing Jiaotong University

稿件作者
Linqi Xia Beijing Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询