Multi-dimensional Frequent Pattern Mining of Trips in Beijing Urban Rail Transit
编号:1611 访问权限:仅限参会人 更新:2021-12-03 13:42:09 浏览:97次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
ABSTRACT Beijing is famous for the large number of people and the significant phenomenon of job-housing mismatch, and residents here have specific mode of travel, especially in the Beijing Urban Rail Transit (BURT). Multi-dimensional Frequent Pattern Mining (MFPM) can efficiently mine the frequent patterns of residents' travel behavior, find out the association rules of trips in BURT, and explore the underling mechanism. We obtained travel information from the transit card data of BURT in 2015 and chose data in spatial, temporal and line dimensions as the attribute sets. It’s found that there is some land use related “station group” such as “Xierqi Group” and “Guomao Group” and several strongly associated "commuting OD pairs" such as {Wangjing, Maquanying} and {Changyang, Fengtai}. The research will help unraveling the travel regularities of riders in BURT and assisting operation management. Keywords: association rule; Multi-dimensional Frequent Pattern Mining; smart-card data; trip; urban rail transit
关键词
CICTP
报告人
Shuai Chunyan
Faculty of Transportation Engineering, Kunming University of Science & Technology

稿件作者
Shuai Chunyan Faculty of Transportation Engineering, Kunming University of Science & Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询