Short term passenger flow prediction of county public transportation based on Elman neural network
编号:1444 访问权限:仅限参会人 更新:2021-12-03 10:50:29 浏览:82次 张贴报告

报告开始:2021年12月17日 11:15(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
With the promotion of Rural Revitalization Strategy, county public transport ushered in a period of rapid development. Public transport vehicles are the most important means of public transportation for commuters in the county, but the overcrowding of commuter peak at noon greatly reduces the service level of public transport. In order to better guide the public transportation system to make operation plan in advance, achieve rapid scheduling and improve service level, it is necessary to select appropriate forecasting methods to predict the future trend of short-term passenger flow during the noon commute peak period. Based on the historical data of public transport passenger flow in Fugu County, this paper takes 10 minutes as the node, selects the data of the same period and adjacent period of adjacent weeks and days as the input data, uses Elman neural network and BP neural network model to forecast the passenger flow in peak period, and compares the prediction performance and accuracy of the two prediction methods.
关键词
CICTP
报告人
Li Ling
Chang'an University

稿件作者
Li Ling Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询