Optimized Component Learners Diversity of Short-Term Traffic State Forecasting Model With Multimode Perturbation
编号:1387 访问权限:仅限参会人 更新:2021-12-03 10:49:15 浏览:84次 张贴报告

报告开始:2021年12月17日 10:33(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Ensemble learning algorithms train multiple component learners and then combine their predictions. Based on optimizing the diversity of component learners, we proposed a method of short-time traffic state prediction-NNPDAP. In this paper, the perturbation of training data set, input attribute and learning parameter are used to construct eight perturbation modes for optimizing the diversity of component learners. There have built three groups of experiments respectively for comparing the accuracy of traffic state prediction, error distribution, and time efficiency. The experimental results show that, by enhancing the diversity of component learners it can improve the prediction accuracy and robustness, NNPDAP has a stronger competitiveness compared with no perturbation method.
关键词
CICTP
报告人
Qingchao Liu
Jiangsu University

稿件作者
Qingchao Liu Jiangsu University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询