Trajectories Prediction of Surrounding Vehicles at Urban Intersections
编号:1339 访问权限:仅限参会人 更新:2021-12-03 10:48:09 浏览:83次 张贴报告

报告开始:2021年12月17日 10:19(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Long-term accurate prediction of surrounding vehicle trajectories is one of the key technologies for unmanned vehicles passing through real urban intersections safely and efficiently. Aiming at the long-time accurate prediction of vehicle trajectories at urban intersections, with the subgrade and real vehicle data acquisition platform, the motion patterns recognition model of target vehicles is established based on Gaussian mixture model(GMM), and then the Gaussian process regression(GPR) algorithm is used to establish the trajectories prediction model for each model extracted from GMM. Finally, the algorithm validation is performed using the subgrade dataset and the real vehicle dataset. The results show that: 1) Gaussian mixture model can effectively extract the motion patterns of vehicles. 2) Gaussian process regression algorithm is superior to traditional prediction algorithm in long-term trajectories prediction. The results of the study can provide effective and reliable data support for unmanned vehicles safely passing through intersections.
关键词
CICTP
报告人
Xue-mei Chen
Beijing Institute of Technology

稿件作者
Xue-mei Chen Beijing Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询