Research on Signal Control Method of Single Intersection Based on Reinforcement Learning
编号:113 访问权限:仅限参会人 更新:2021-12-03 10:14:12 浏览:124次 张贴报告

报告开始:2021年12月17日 08:52(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
With the advancement of urbanization, urban traffic becomes more and more congested. As an important node of traffic flow convergence and diversion, the intersection efficiency will affect the operation efficiency of the urban transportation system to a large extent. The existing intersection signal control mostly uses the empirical fixed signal timing, and the empirical fixed signal timing seriously affects the traffic efficiency of the intersection. This paper starts with the signal control method of a single intersection in the city, mainly improves the operation efficiency of the intersection by optimizing the signal control method of the intersection; this paper proposes the intersection signal control method based on reinforcement learning, and adopts the Q-learning reward and punishment signal design method, implementing optimization of intersection signal control, and finally, the simulation experiment of the intersection is carried out by PTV- Vissim9.0 software to verify the feasibility of the theory. Keywords: Q-learning; Traffic signal control; Reinforcement learning; Simulation
关键词
CICTP
报告人
Le Zhang
Beihang university

稿件作者
Le Zhang Beihang university
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询