An improved YOLOv3 traffic sign recognition algorithm
编号:112 访问权限:仅限参会人 更新:2021-12-03 10:14:11 浏览:126次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Aiming at the problem that the accuracy and real-time performance of traffic sign recognition in natural scenes can’t meet the actual requirements, an improved YOLOv3 traffic sign recognition algorithm is proposed. Due to the low accuracy of predicted target frame in YOLOv3, attention mechanism is introduced to improve the border regression. The edge features of the target object are weighted heavily in order to improve the accuracy of the predicted target frame. Finally, the improved YOLOv3 algorithm is applied to traffic sign recognition. According to a large number of experiments and comparative analysis, the YOLOv3 algorithm combined with attention mechanism not only ensures the accuracy of recognition, but also improves the accuracy of the predicted target frame. When applied to traffic sign recognition, it achieves better recognition performance.
关键词
CICTP
报告人
ziping he
hebei university of technology

稿件作者
ziping he hebei university of technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询