A Large-scale Spatiotemporal Prediction Method of Traffic Speed Based on 3D Convolutional Neural Network
编号:111 访问权限:仅限参会人 更新:2021-12-03 10:14:10 浏览:124次 张贴报告

报告开始:2021年12月17日 08:51(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
In recent years, the development of big data acquisition and storage, computer technology and communication technology has provided a new momentum for ITS, while traffic speed prediction is a core link of ITS. In order to achieve a large-scale traffic forecasting in urban road network and extract the time series feature and spatial feature of road network state evolution, a spatiotemporal prediction method based on 3D convolution neural network is proposed in this paper, using gridded historical traffic data and corresponding road network traffic speed for training. Finally, in the empirical analysis stage, 3D CNN is evaluated and compared with the prediction results of 2D CNN, LSTM and BPNN models on the whole, midweek and weekend.Experimental results show that the MAE, MAPE and RMSE indices of the test set are at least 10% better than other models. It has a good performance in the actual road network traffic speed prediction.
关键词
CICTP
报告人
Yuxin Niu
Beihang University

稿件作者
Yuxin Niu Beihang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询