FCM and BPSO-RS-SVM Selective Ensemble Learning for Highway Traffic State Identification considering Heavy Vehicles
编号:1029 访问权限:仅限参会人 更新:2021-12-03 10:34:39 浏览:82次 张贴报告

报告开始:2021年12月17日 09:01(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T6] Track 6 Future Transportation and Modern Logistics

暂无文件

摘要
Highway traffic big data contains rich traffic flow characteristic information. Due to the obvious differences in the operating characteristics of various vehicles on the highway, namely, heavy vehicles are larger in size, lower in speed, inflexible in the driving, and excessive consumption of road space, which will affect road operation. This paper studies the method of traffic flow state identification considering the impact of different vehicle types based on big data-driven theory. The BPSO-RF-SVM selective ensemble model is constructed for traffic flow state identification. The proposed method first uses fuzzy c-means algorithm to classify the traffic status. Then, random subspace ensemble algorithms are used to divide feature subsets and train base learner SVM, and the BPSO optimization algorithm is established to select classifier. This method is implemented the JingHa highway, in Jilin Province, China to test the efficiency and applicability of this model. Keywords: Heavy vehicle, Traffic state, BPSO-RS-SVM, Selective ensemble learning
关键词
CICTP
报告人
Zhanzhong Wang
Jilin University

稿件作者
Zhanzhong Wang Jilin University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询