Analysis of Crystalline Silica Aerosol Using Portable Raman Spectrometry: Feasibility of Near Real-Time Measurement
编号:135 访问权限:仅限参会人 更新:2022-05-12 21:52:59 浏览:548次 特邀报告

报告开始:2022年05月27日 15:20(Asia/Shanghai)

报告时间:20min

所在会场:[S6] Occupational Safety and Health [S6-3] Occupational Safety and Health-3

暂无文件

摘要
A Raman spectroscopy based method has been developed for measurement of trace airborne concentrations of respirable crystalline silica (RCS). Three aerosol microconcentration techniques were investigated for effective coupling of collected particulate samples with micro-Raman spectroscopy: (i) direct analysis on a particulate filter after focused aerosol collection using a converging nozzle; (ii) analysis of dried particulate deposit on a filter obtained directly from the aerosol phase using the Spotsampler device; and (iii) analysis of a dried spot (similar to 1-3 mm diameter) obtained by redepositing the particulate sample, after low temperature plasma ashing of the filter sample. The deposition characteristics (i.e., spot diameter, shape, and deposit uniformity) of each technique were investigated. Calibration curves were constructed and detection limits were estimated for a-quartz using the A(1) Raman Si-O-Si stretching bending phonon mode at 465. The measurement sensitivity could be substantially improved by increasing the signal integration time and by reducing the particle deposition area. Detection limits in the range of 8-55 ng could be achieved by microconcentrating the aerosol sample over a spot measuring 400-1000 mu m in diameter. These detection limits were two to three orders of magnitude lower compared to those attainable using current standardized X-ray diffraction and infrared spectroscopy methods. The low detection limits suggest that near real-time measurements of RCS could be achieved with limits of quantification ranging from 2 to 18.5 mu g/m3 (at 10 min collection time and 1.2 L/min), depending on microconcentration technique used. The method was successfully extended to the measurement of alpha-quartz air concentration in representative workplace aerosol samples. This study demonstrates the potential of portable micro-Raman spectroscopy for near-real time measurement of trace RCS in air.
关键词
Raman spectroscopy,respirable crystalline silica,dust monitoring,real-time measurements
报告人
Lina ZHENG
China University of Mining and Technology

稿件作者
丽娜 郑 中国矿业大学
温婷 冯 中国矿业大学
臻 韩 中国矿业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月26日

    2022

    05月27日

    2022

  • 05月03日 2022

    初稿截稿日期

  • 05月26日 2022

    报告提交截止日期

  • 05月28日 2022

    注册截止日期

主办单位
中国矿业大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询