Morphological and Aerodynamic Characteristics of Respirable Dust Aggregates
编号:127 访问权限:仅限参会人 更新:2022-05-12 14:35:25 浏览:570次 口头报告

报告开始:2022年05月27日 10:03(Asia/Shanghai)

报告时间:12min

所在会场:[S6] Occupational Safety and Health [S6-2] Occupational Safety and Health-2

暂无文件

摘要
Respirable dust presents as a severe health threat to workers in industries as diverse as coal mining, metal and nonmetal mining, metal fabrication, metallurgy, and construction. In China, for example, over 20,000 workers per year have been diagnosed with pneumoconiosis since 2010 due to the excessive exposure to dust. Laudable efforts have been directed towards minimising workers' inhalation of respirable dust.

Driven by their small size and the humid environment, dust particles tend to stick together to form aggregates, which have been recognised as fractal objects that possess self-similar structures. Compared to individual particles, the motion of fractal aggregates is much more difficult to quantify due to their intricate structure, inherent non-uniformity in primary particle size and density, and complex interaction with fluid flow. The understanding of the aerodynamics of fractal aggregates is way incomplete. This, in turn, hinders the development and commercial deployment of conventional or emerging dust removal technologies.

This study examines the morphological and aerodynamic characteristics of fractal dust aggregates. Specifically, aggregation of primary dust particles is simulated using the discrete element method (DEM). The morphological characteristics of the formed aggregates are described in terms of fractal dimension, coordination number and gyration radius. Subsequently, the dust aggregate is released in the air and let it settle and reach its steady state; the settling is solved using a fully coupled lattice Boltzmann method (LBM) and DEM. The slow aggregation process leads to a compact structure of dust aggregates. When reaching their steady settling state, aggregates tend to orientate with their maximum projection area perpendicular to the falling direction. The dependency relationship between the aerodynamics of dust aggregates and their morphological characteristics is established.        
关键词
Respirable dust, dust aggregates, fractal, aerodynamics,LBM-DEM,dust removal
报告人
Zhengbiao PENG
The University of Newcastle

稿件作者
Zhengbiao Peng The University of Newcastle
Elham Doroodchi The University of Newcastle
Behdad Moghtaderi The University of Newcastle
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月26日

    2022

    05月27日

    2022

  • 05月03日 2022

    初稿截稿日期

  • 05月26日 2022

    报告提交截止日期

  • 05月28日 2022

    注册截止日期

主办单位
中国矿业大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询