Syngas evolution and energy recovery from the polypropylene and polystyrene blends via CO2-assisted gasification
编号:12 访问权限:仅限参会人 更新:2022-05-12 15:43:56 浏览:634次 口头报告

报告开始:2022年05月27日 09:00(Asia/Shanghai)

报告时间:20min

所在会场:[S4] Energy Science and Technology [S4-2] Energy Science and Technology-2

暂无文件

摘要
 Plastic pollution has become an enormous challenge for human beings and the environment due to its widespread use and low degradation. The treatment of plastic waste by gasification technology has attracted more and more attention. However, the syngas evolution and energy recovery of the plastic mixture during CO2-assisted co-gasification are less studied. The co-gasification of the polypropylene (PP) and polystyrene (PS) blends at different proportions was carried out in a fixed-fed reactor at 1173K. The gas flow rate, yield, and recovered energy of gaseous products were quantitatively investigated. The experimental results of CO, H2, hydrocarbon (CxHy) yields and energy output in comparison with weighted results from the gasification of individual compositions indicated that co-gasification had positive effects on the yield and energy output. The maximum synergistic effects on CO and H2 yields were obtained under a 2:3 mixing ratio of PP/PS (2P3S), and the synergistic effects of energy output also reached the optimum level. However, the synergistic effects in the whole gasification process gradually weaken as the PP ratio increases. Total syngas with a calorific value of 24.2-28.4 kJ/g was generated through CO2-assisted co-gasification, which was much larger than the energy output of individual feedstocks. And the syngas with the highest energy output of 28.4 kJ/g had CO and H2 mole fractions of 93.4% and 1.5% under a 2P3S mixing ratio, respectively. The CO2 consumption belonged to each gram of these blends was a range of 1.0-1.8g in the process. These results support the feasibility of converting plastic mixture to high calorific value syngas through CO2-assisted gasification and reducing the greenhouse effect by consuming CO2.
 
关键词
synergistic effects, polypropylene, polystyrene, energy recovery, CO2 consumption
报告人
Xinhao YE
Anhui University of Science and Technology

稿件作者
鑫浩 叶 安徽理工大学
金虎 李 安徽理工大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月26日

    2022

    05月27日

    2022

  • 05月03日 2022

    初稿截稿日期

  • 05月26日 2022

    报告提交截止日期

  • 05月28日 2022

    注册截止日期

主办单位
中国矿业大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询