61 / 2021-10-15 15:56:35
Segmentation of Synapses in Fluorescent Images using U-Net++ and Gabor-based Anisotropic Diffusion
synapse, image segmentation, Gabor-based anisotropic diffusion, U-Net++
终稿
Yifei Yan / Shanghai University
Zhen Qiu / University of Edinburgh
Qi Zhang / Shanghai University
Abstract—Objective: Large-scale and automated detection of fluorescent microscopic synaptic images are essential for the understanding of brain function and disorders at the molecular level. However, the quantification of synapses from fluorescent images is challenging due to low signal-to-noise (SNR) and non-synaptic background artefacts. This calls for new tools to be developed for an automatic, high-throughput and robust synapse image segmentation.



Methods: we proposed an automatic synapse segmentation framework using a deep learning method based on a modified U-Net++ and Gabor-based anisotropic diffusion (GAD). The modified U-Net++ was used to segment the non-synaptic regions, while the multiplicative Poisson noise was suppressed and the edge of the synapses was enhanced by the GAD filter. Thereafter, the synapses were segmented by a thresholding method.



Results: The non-synaptic regions were segmented precisely, and the Dice coefficient and Jaccard similarity were 0.833 and 0.719. Our model for synapse segmentation reduced the interference from the non-synaptic tissues and Poisson noise and yielded automatic and accurate segmentation of synapses.



Conclusion: We have proposed an automatic segmentation framework that can accurately segment non-synaptic and synaptic tissues, which may have the potential to automate the quantitative analysis of synapses.
重要日期
  • 会议日期

    11月13日

    2021

    11月14日

    2021

  • 09月30日 2021

    报告提交截止日期

  • 11月14日 2021

    注册截止日期

主办单位
IEEE北京分会
中国生物医学工程学会医学物理分会
中国电子学会生命电子学分会
承办单位
中国科学技术大学
安徽省生物医学工程学会
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询