102 / 2021-06-05 21:54:52
Simplified Boundary Element Model for Lightning Current Distribution on the Arbitrary Cross Section of Conductor
摘要录用
李科杰 / 合肥工业大学

Metal structures with a certain extent of height such as lightning rods, wind turbine towers, steel frames of viaducts might be more likely struck by lightning and attract large transient current along them [1]. The current distribution raises concern of researchers in the field of lightning protection and electromagnetic compatibility, but the electromagnetic simulation on such large size and complicated conductor structures often costs too much to get acceptable results. In this paper, the boundary element method (BEM) is involved to simplify the lightning current distribution calculation through some approximation techniques. Firstly, the partial differential equation (PDE) of the current surface density is deduced on the two-dimension cross section Ω. Represented by magnetic vector potential, the PDE from Maxwell’s equation turns to a diffusion equation and a Laplace equation,

\({\nabla ^2}{{\vec A}_1} - j\omega \mu \sigma {{\vec A}_1} = - \mu \vec J,\ {\rm{ in \ \Omega }}\)

\({\nabla ^2}{{\vec A}_2} = 0\ {\rm{ outside \ \Omega }}\)

\({{\vec A}_1} = {{\vec A}_2} \buildrel \Delta \over = g, \ {\rm{ on }}\ \partial {\rm{\Omega }}\)

(1)

where μ and σ are permeability and conductivity of the conductor, ω is the angular frequency and Je is the surface density of lightning current excitation [2]. If the difference of conductor potential φ per unit length along the current direction is fixed, Je=-σφ , which is also a constant. Thus, Je is known and A1A2g are to be solved from the equation.


Then, by Green's second identity and Gauss divergence theorem, (1) can be transformed into an integral,

\({A_1} = \iint\limits_\Omega {\mu {J_e}{G_1}{\text{d}}S} - \oint\limits_{\partial \Omega } {g\nabla {G_1} \cdot \vec n{\text{d}}l} = \mu {J_e}\oint\limits_{\partial \Omega } {{{\vec F}_1} \cdot \vec n{\text{d}}l} - \oint\limits_{\partial \Omega } {g\nabla {G_1} \cdot \vec n{\text{d}}l}\)

\({A_2} = - \oint\limits_{\partial \Omega } {g\nabla {G_2} \cdot \vec n{\text{d}}l} \)

(2)

which is only valued on the boundary of the cross section.  G1 and G2 are the Green’s functions of the boundary value problem of the two PDEs in (1) and ▽·F1=G1 , which can be solved separately. Since  A1=A2 on the boundary, the equation only contains unknown function g. The point collection method is adopted in order to construct a linear algebraic equation and finally results in an approximation solution of current distribution. The proposed method only needs discrete on the boundary of the cross section of the conductor, which greatly simplifies the calculation progress.
重要日期
  • 会议日期

    07月16日

    2021

    07月18日

    2021

  • 06月05日 2021

    初稿截稿日期

  • 07月18日 2021

    注册截止日期

主办单位
中国电工技术学会电接触及电弧专业委员会
中国电工技术学会输变电设备专业委员会
中国电工技术学会工程电介质专业委员会
中国电机工程学会变电专业委员会
中国电工技术学会等离子体及应用专委会
IEEE PES电力开断技术委员会(筹)
IET英国工程技术学会西安分会
承办单位
西安交通大学电气工程学院
西安高压电器研究院有限责任公司
电力设备电气绝缘国家重点实验室
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询