124 / 2021-06-18 14:22:12
Robust Adaptive Feedback Linearization Control Using Online Neural-Network Estimators for Uncertain Linear Induction Motor Drive System
Feedback Linearization, Neural- Network, Linear Induction Motor
终稿
Mahmoud F. Elmorshedy / Electrical Power and Machines Engineering Department; Faculty of Engineering; Tanta University
This paper presents a robust adaptive feedback linearization control (RAFLC) using Takagi-Sugeno-Kang (TSK)-type recurrent Petri fuzzy-neural-network (T-RPFNN) for accomplishing superior dynamic performance for the linear induction motor (LIM) drive system. The RAFLC includes a FLC, a T-RPFNN estimator and an adaptive PI controller. The FLC is used to stabilize the LIM drive and the T-RPFNN estimators are utilized to approximate the nonlinear functions of the LIM and the adaptive PI controller is utilized to reduce the chattering in the control inputs. Furthermore, the Lyapunov stability analysis is employed to ensure the RAFLC approach stability. The experimental results endorse the proposed RAFLC robustness even at uncertain dynamics existence and external disturbances.
重要日期
  • 会议日期

    07月01日

    2021

    07月04日

    2021

  • 07月03日 2021

    报告提交截止日期

  • 11月03日 2021

    注册截止日期

主办单位
Huazhong University of Science and Technology, China
协办单位
University of Sydney, Australia
Southwest Jiaotong University, China
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询