35 / 2021-04-16 08:36:30
Optimization of ELM control via using 3D fields for various ITER scenarios
ELM control;,ITER
摘要待审
LI LI / 东华大学
Type-I edge localized modes (ELMs) is potentially dangerous to the future tokamak devices such as ITER [1], since a large amount of particles and energy can be released from the plasma region into the plasma facing components during the period of large ELMs bursts. It has been extensively demonstrated that the resonant magnetic perturbation (RMP) technique is a relatively mature method for controlling type-I ELMs [2-6]. Following linear plasma response modeling for many tokamak devices utilizing the single fluid MHD code MARS-F [7], two criteria have been established that can be used to predict the choice of the ELM control coil configuration. One is to maximize the resonant radial magnetic perturbed field near the plasma ede, and the other is to maximize the plasma boundary surface displacement near the X-point. These two criteria often predict similar optimal coil phasing [8].

In this work, the plasma surface displacement near the X-point is used to optimize the RMP ELM control configuration in ITER [9-10]. A systematic investigation is carried out for all 8 ITER scenarios including all stages of ITER operation, with varying ratio of plasma current and toroidal magnetic field. With three rows of magnetic coils in ITER, the optimal coil phasing is found to be roughly linearly scales with the edge safety factor q95. In order to understand effects of RMPs on the plasma momentum and particle confinement, quasi-linear initial value simulations are also carried out utilizing the MARS-Q code [11] for all 8 ITER scenarios. Results show a weak effect of the RMP on the plasma core flow in all scenarios. The RMP effect on the plasma density varies depending on the plasma scenario and the coil current configuration.

[1] Loarte A et al 2007 Nucl. Fusion 47 S203

[2] Evans T E et al 2004 Phys. Rev. Lett. 92 235003

[3] Jeon Y M et al 2012 Phys. Rev. Lett. 109 035004

[4] Liang Y et al 2007 Phys. Rev. Lett. 98 265004

[5] Suttrop W et al 2011 Phys. Rev. Lett. 106 225004

[6] Kirk A et al 2011 Plasma Phys. Control. Fusion 53 065011

[7] Liu Y Q et al 2000 Phys. Plasma 7 3681

[8] Zhou L et al 2018 Nucl. Fusion 58 076025

[9] Li L. et al 2019 Nucl. Fusion 59 096038

[10] Li L. et al 2020 Nucl. Fusion 60 016013

[11] Liu Y Q et al 2013 Phys. Plasma 20 042503

 
重要日期
  • 会议日期

    07月12日

    2021

    07月15日

    2021

  • 06月20日 2021

    摘要截稿日期

  • 06月25日 2021

    摘要录用通知日期

  • 07月14日 2021

    报告提交截止日期

  • 07月31日 2021

    注册截止日期

主办单位
Huazhong University of Science and Technology
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询