302 / 2020-01-06 06:27:00
Differentially private nonlinear canonical correlation analysis
全文录用
Yanning Shen / University of California, Irvine, USA
Canonical correlation analysis (CCA) is a well-documented subspace learning approach widely used to seek for hidden sources common to two or multiple datasets. CCA has been applied in various learning tasks, such as dimensionality reduction, blind source separation, classification, and data fusion. Specifically, CCA aims at finding the subspaces for multi-view datasets, such that the projections of the multiple views onto the sought subspace is maximally correlated. However, simple linear projections may not be able to exploit general nonlinear projections, which motivates the development of nonlinear CCA. However, both conventional CCA and its non-linear variants do not take into consideration the data privacy, which is crucial especially when coping with personal data. To address this limitation, the present paper studies differentially private scheme for nonlinear CCA. Numerical tests on real datasets are carried out to showcase the effectiveness of the proposed algorithms.
重要日期
  • 会议日期

    06月08日

    2020

    06月11日

    2020

  • 01月12日 2020

    初稿截稿日期

  • 04月15日 2020

    提前注册日期

  • 12月31日 2020

    注册截止日期

主办单位
IEEE Signal Processing Society
承办单位
Zhejiang University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询