18 / 2017-12-28 12:44:30
General Regression Neural Network
regression
摘要待审
Adhiyan C / PMC TECH
This paper describes a memory-based network that
provides estimates of continuous variables and converges to the
underlying (linear or nonlinear) regression surface. This general regression neural network (GRNN) is a one-pass learning
algorithm with a highly parallel structure. Even with sparse
data in a multidimensional measurement space, the algorithm
provides smooth transitions from one observed value to another. The algorithmic form can be used for any regression
problem in which an assumption of linearity is not justified.
The parallel network form should find use in applications such
as learning the dynamics of a plant model for prediction or
control.
重要日期
  • 会议日期

    02月05日

    2018

    02月07日

    2018

  • 02月07日 2018

    注册截止日期

  • 09月05日 2018

    初稿截稿日期

承办单位
SCOPUS
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询